
Exscriptor

X3 External Script Editor

USER MANUAL

2

Contents

1 INTRODUCTION ...5

1.1 Requirements ...5

1.2 Warranty ...6

1.3 Acknowledgements ...6

2 USING THE EDITOR...7

2.1 Main User Interface..7
2.1.1 Script Editor ..7
2.1.2 Object List ...8
2.1.3 Status Box...8
2.1.4 Script Metadata...8
2.1.5 Script Arguments ..9
2.1.6 Menu...9

2.2 Script Editor ...11
2.2.1 Syntax...13
2.2.2 Errors ..14

2.3 Object List ..16
2.3.1 Duplicates ...19

2.4 Preprocessor macros ..20

2.5 Options Menu ...21

2.6 Script Comparator ...23

2.7 Conflict Viewer ...24

2.8 Support for multiple games (X2/X3/TC/AP)....................................25

2.9 Script file updating ..25

3 USING THE COMMAND LINE VERSION ...26

4 KNOWN BUGS AND OTHER PERNICIOUS PROBLEMS.....................27

4.1 Bugs in the user interface ...27
4.1.1 Syntax Highlighting ...27
4.1.2 Flickering...27
4.1.3 Undo / Redo..27
4.1.4 Copy/Paste ...28
4.1.5 Red error highlighting..28

3

4.1.6 Interrupt signs (@) ..28
4.1.7 Find/Replace...28
4.1.8 Non-standard system fonts/sizes ..28
4.1.9 Using CTRL + mouse wheel to resize the font................................28

4.2 Bugs in the compiler/decompiler ...29
4.2.1 Random value from 0 to … ...29
4.2.2 Apostrophes..29
4.2.3 The Infamous and Enigmatic 1185 ...29
4.2.4 Bad XML ...30
4.2.5 XML Output differences ..30
4.2.6 Unresolved literals ..30
4.2.7 No return value ...31
4.2.9 Commented commands..31
4.2.10 Using double quotes in comments ...31
4.2.11 Variable checker ..32
4.2.12 Ambiguous names ...32
4.2.13 Escape characters in strings ..32
4.2.14 Loading mods in cat/dat files..33

5 BEHIND THE SCENES ...34

5.1 Introduction ..34

5.2 The X3 Files ..34
5.2.1 Language Files ...34
5.2.2 Type Files ...36
5.2.3 Sectors..37
5.2.4 Exscriptor-specific files ...38

5.3 Structure of the Script XML files ..39
5.3.1 Basics ...39
5.3.2 The Codearray ..40

5.4 A Detailed Look at the Codearray...41
5.4.1 Expressions ..42
5.4.2 Conditional Commands...43
5.4.3 Datatypes..44

5.5 "Hidden" commands ...45

5.6 Differences in X2..47

5.7 Differences in X3TC ...47
5.7.1 Data file changes ..48
5.7.2 Command/codearray changes ..48

5.8 Differences in X3AP...49

6 GLOSSARY...50

4

Thanks to Egosoft for creating an incredible series of games

and also allowing them to be so easily modified!

5

1 Introduction

Welcome to Exscriptor, an External Script Editor for Egosoft's X-series of
games. Currently Exscriptor supports:

• X3: Albion Prelude
• X3: Terran Conflict
• X3: Reunion
• X2: The Threat

With this program, you will be able to:

• Open existing X2/X3/TC scripts in both .XML and .PCK format
• Create new X2/X3/TC scripts (.XML)
• Compile the script to check for any syntax errors
• Save scripts as .XML or in simple .TXT format

In addition, because the editor uses the X2/X3/TC/AP data files, all the
possible commands, wares, ships, stations and so forth will be available,
including those present in mods or patches like XTM. The program even
supports the use of data files in different languages (though the editor's
interface is only in English). Since the X games offer a large number of
commands and objects, these are visible in a list onscreen, so you do not
have to remember them all.

Before using the program, however, please read the warranty and check the
requirements.

1.1 Requirements

The editor requires Windows and the Microsoft .NET Framework 3.5 or better
in order to run. You may have this already installed, but if you do not, you
should be able to obtain the latest version from Microsoft's website
(www.microsoft.com) or via Windows Update. The editor also requires X2 or
X3 to be installed, since it needs access to the game's data files. When you
run the program for the first time, it will ask you where to find the games. You
can later change this by going to the Tools --> Options menu. It should work
with X2 version 1.5, X3 version 2.5, X3TC version 2.7, and X3AP version 1.0
– earlier versions may or may not work correctly (and similarly, any future
patches may not work either).

The program should easily run on any computer capable of running X3, but it
can take a few moments to load up the data when the editor starts, so please
be patient.

6

1.2 Warranty

Put simply, there isn't one. This program is provided 'as is', with no guarantee
that it will work 100% of the time. Before using the program it is strongly
recommended that you make a backup of your script directory, at the very
least. The author accepts no responsibility if you happen to corrupt the game
or break your computer somehow while using the program. If this possibility
concerns you, then do not use the program.

1.3 Acknowledgements

This program would not be possible without the prior work of other people.
Acknowledgements go to:

• doubleshadow for the X3 file system interface
• (www.doubleshadow.wz.cz)

• the posters in this Egosoft forum thread, who started the process of
deciphering the script file format:
• http://forum.egosoft.com/viewtopic.php?t=89990

• the following Code Project articles, without which the interface would
look much more like Notepad:
• http://www.codeproject.com/KB/cs/shadyrichtext.aspx
• http://www.codeproject.com/KB/edit/SyntaxHighlighting.aspx
• http://www.codeproject.com/KB/cs/dandtutorial.aspx
• http://www.codeproject.com/KB/cpp/RTFSynchronizedScrolling.aspx

Many thanks also to the following people at the Egosoft forums for helping
solve various bugs or suggesting improvements in the Exscriptor:

• Blacky_BPG
• ThatGuyBob
• Erilaz
• Cebraio
• bunkerprivate
• SSwamp_Trooper
• Moonrat
• DesertEagle
• draffutt
• many, many others – see the About menu in the tool.

Special thanks to Shimrod for helping with the update to X3AP.

Extra special thanks go to Blacky_BPG for providing alternative hosting at the
www.blackpanthergroup.de site!

7

2 Using the editor

2.1 Main User Interface

When the editor has started, you will see a screen like this:

This is the main interface of the editor. The large black area on the left is the
Script Editor, where you can see and edit the code of the script. Below this is
the Status Box, which will tell you if anything goes wrong. On the right is the
Object List, where you can select script commands, objects (e.g. wares, ship
types), and object commands. Above this are the buttons controlling the
Object List and below it is the Script Metadata and, below that, the Script
Arguments. At the far top left is the Menu.

2.1.1 Script Editor
The Script Editor is where most of the activity takes place. When you open a
script, or if you are creating a new one, the code of the script will be displayed
here, with the line numbers in the corresponding column on the left. By
default, the code is highlighted in the same way it is in X3's internal script
editor; you can turn this off in the options (Tools --> Options) if you wish. Most

8

of the usual text editing commands should apply: copy, paste, cut, undo, redo
etc. These commands are also available in the "Edit" menu.

Right clicking in the Script Editor will open a small shortcut menu with six
options: script commands, variables, constants, wares, ships, and stations.
Clicking on one of these (or, in the case of script commands, one of the sub-
options) will open a sort of auto-complete box that will allow you to select the
command/object you want. You can either select it directly from the list, or
start typing - as you do, the options should be narrowed down. For example, if
you open the Ship menu and type "Argon Bus", all of the ships beginning with
those letters (i.e. all variants of the Argon Buster) will be displayed. You can
either click on them or just keep typing. When you are done, press Enter or
click Accept and the selected object/command will appear in the Script Editor.

More details can be found in Section 2.2.

2.1.2 Object List
The Object List on the right hand side of the interface is there to make it
possible to write scripts without memorising all 800+ or so script commands,
not to mention the hundreds or even thousands of wares, ships, stations, ship
commands and so forth. It has three modes, selectable using the buttons
above it. In the first mode, the List will show all the script commands available,
sorted into the appropriate categories; the second mode shows all available
ship/station commands, plus any user defined names for them; the third mode
shows all objects - wares, ship types, that sort of thing. Double clicking on any
of these will copy it into the Script Editor at the current cursor position.

More details can be found in Section 2.3.

2.1.3 Status Box
The Status Box is how the editor communicates with you. If it encounters any
problems, then it will list them here. You are strongly advised to pay attention
to this box, especially when compiling scripts or when the editor first loads the
data from X3 (or X2) - there may well be unreadable files, conflicting object
commands, or other problems.

2.1.4 Script Metadata
The Script Metadata is data about the script rather than the data in the script:
its name, for example. You can alter this information as you wish; the name is
the most important, as this determines how it will show up in the game (not
the filename - so two separate files with the same script name will conflict). If
your script is for a ship/station command, you will probably want to add it to
the Script Command box; you can find the command names in the Object List,
or you can also use the command number (if you know it).

9

2.1.5 Script Arguments
Here is where you can add arguments to your script – parameters that it
needs to run. If you click the big Add Argument button, a new window
appears:

where you can enter the name, select the type, and add a description. You
can also remove arguments by selecting them in the list and clicking the
Remove Argument button, or edit existing arguments with the Edit
Argument button. You can also reorder them with the two arrow buttons.
Once added, you can refer to an argument just as a variable, i.e. $argument,
just like in the X3 ingame script editor.

2.1.6 Menu
The main Menu in the top left provides a number of extra commands:

• File…
• New – creates a new script in a new tab
• Open – opens an existing script (in XML, PCK, or TXT format)
• Open Script Set - opens a set of multiple scripts at once (like a

workspace, or project)
• Close – closes the current script tab
• Close All – like above, but for all script tabs
• Save – saves a script if it has already been saved (otherwise it

acts like Save As). This will not prompt for overwriting.
• Save As – saves a script in either XML or TXT format. Saving in

XML will automatically compile the script first. The Exscriptor can
also make a backup when overwriting an existing file (a copy with
the extension .bak) if the appropriate option is set.

• Save All – as the name implies, saves all scripts. It will prompt
you when necessary for names etc and will compile too.

• Save Script Set - saves the set of currently opened scripts as a
script set (like a workspace or project). Note that this does not
save the scripts themselves, only a list of their names.

• Quicksave as Text – as the name implies, it will save the current
script to a text file named after the script

• Exit – closes the program
• Edit…

• Copy, Cut, Paste, Find, Replace, Undo, Redo, Select All, Goto
Line

• View…
• Hide Object List – you can hide the Object List if you so wish.
• Compare with – loads the Comparator (see below).

10

• Refresh from file – reloads script from disk
• Build…

• Compile – compiles a script to check it for errors. Note that this
does not save the script – no file is produced unless you use
Save As.

• Compile All – compiles all scripts, stopping if there are any errors.
• Indent – automatically indents a script.

• Tools…
• X2/X3/TC/AP Mode – this allows you to select whether Exscriptor

is running in X2, X3, TC or AP mode. Note that this involves
reloading all the data from the appropriate game and can take a
few moments. See X2 support, X3TC support, and X3AP
support later for more info.

• Options – allows you to select the game directories, appearance
of some of the interface, and also allows you to set other options
such as enable/disable highlighting. (See Options Menu below
for more info.)

• Language files – allows you to select what language data files
you wish to use. Note that not all will necessarily be available!
This will reload the game data and may take a few moments; you
will need to reload any opened scripts to see the changes,
however.

• Reload Game Data – reloads the game data files.
• Conflict Viewer – shows all conflicts in data (see Conflict Viewer

below for more details).
• Find calling scripts – scans all scripts to see if any call the current

script, and if so, gives you the option to open them.
• Find called scripts – finds and optionally opens any scripts called

by the current script1.
• Find called scripts (recursively) – finds and optionally opens any

scripts called by the current script, plus any scripts called by
those scripts, and so on. Will ignore .pck and ! prefixed scripts.

• Help – view the About screen or open up this manual.

When changing language, the user interface remains in English (as a
consequence of my not speaking seven languages) but a different set of data
files are loaded. However, if you have scripts that use objects or commands
that are only available in certain languages, the external script editor will be
unable to find them and compilation will likely fail.

Also, a note on saving/opening scripts: there are three formats available when
opening scripts, but only two when saving – you cannot save in .PCK format.
The .TXT format is readable by any text editor, e.g. Notepad, but includes the
script metadata at the top of the file, like so:

1 Note that if a script exists in both .pck and .xml forms, then the .pck form is opened.

11

test.script.1 � name
0 � command
Last mission for M0 � description
194 � version
1 � number of arguments
name|value|9|name of ship � argument
---END-OF-METADATA---

And the rest of the code then follows. The .TXT format is designed to allow
you to write/edit scripts in other programs (should you so wish), but if you
forget this first part, it will not load correctly.

2.2 Script Editor

The Script Editor is where most of the activity takes place. When you open a
script, or if you are creating a new one, the code of the script will be displayed
here, with the line numbers in the corresponding column on the left. By
default, the code is highlighted in the same way it is in X3's internal script
editor; you can turn this off in the options (Tools --> Options) if you wish. Most
of the usual text editing commands should apply: copy, paste, cut, undo, redo
etc. These commands are also available in the "Edit" menu.

Multiple scripts can be opened at once, and each will be displayed in its own
tab. Above the editor window is a drop-down menu of all the opened scripts,
sorted by name, allowing you to quickly select another script if you have many
tabs open.

After editing a script, you will notice an asterisk (*) appear next to the name of
the script at the top of the tab; this lets you know it has been modified. If you
try to close a modified script without saving first, it will ask you if you're sure.

12

Right clicking in the Script Editor will open a small shortcut menu with the
usual editing commands plus several other options: script commands,
variables, constants, wares, ships, and stations. Clicking on one of these (or,
in the case of script commands, one of the sub-options) will open a sort of
auto-complete box that will allow you to select the command/object you want.
You can either select it directly from the list, or start typing - as you do, the
options should be narrowed down. For example, if you open the Ship menu
and type "Argon Bus", all of the ships beginning with those letters (i.e. all
variants of the Argon Buster) will be displayed. You can either click on them or
just keep typing. When you are done, press Enter or click Accept and the
selected object/command will appear in the Script Editor.

13

Notice how some of the ships have numbers after their name; the reason for
this is explained in more detail in the Object List section, but essentially the
problem is that there are multiple Argon Busters in the game, all with the
same name. To distinguish them, the editor adds some identifying numbers
after these duplicates; the numbers are often either the maintype and subtype
of the ware or the index into the language file, as these are always unique. If
you want to add an Argon Buster or other duplicated entity to your script, you
should check to make sure you are selecting the correct one. Note that you
even have this problem in the ingame editor, except in that case you don't get
any identifying numbers.

2.2.1 Syntax
Note that there are a few differences between the syntax used in the ingame
script editor (ISE) and the one used in Exscriptor. This is a consequence of
the nature of the scripting language, which is very difficult to parse. To make
my life easier, the editor recognises several special types of text:

 * Variables
 * Constants
 * Numbers
 * Strings
 * Literals
 * Comments

Everything else is considered to be part of a script command.

As in the ISE, variables must start with a $ sign and can include letters,
numbers, and dots. Constants must not include spaces and must be
surrounded by [square brackets]. Both of these are highlighted in green, as in
the editor. The special value null is also highlighted green. Numbers and
strings are both highlighted in blue; numbers can include a negative sign but
not a decimal point, since there are only integer numbers in X3 scripts. Strings
must be surrounded by 'single apostrophes' and can include any characters
except more apostrophes.

14

The most complex type of text is the Literal, a catch-all term for anything else;
this can include object commands, ship types, wares, and other various
special items. Because there are so many of these, to make them easier for
the editor to recognise, they must be surrounded by { curly braces }. Literals
are highlighted in yellow. The compiler will complain if you make up a non-
existent Literal, telling you it has found an "unresolved literal" (i.e. it doesn't
know what it is). In some rare cases, real Literals will be unresolved; this is
almost always because the editor has been unable to load the data file where
this Literal is stored. In this case, you should read the messages when the
editor first loads to see if it has had problems loading any data files.

Comments are the final type of special text; these are lines that start with an *
asterisk. Comments are coloured grey. Note that some comments have
unusually strange behaviour in X3 scripts: if you have commented out a
command in the ISE, then that command still exists, it is merely disabled.
Early versions of the Exscriptor tried to handle these sorts of commented
commands, then later versions disabled it (handling them just as text), and as
of v1.023, Exscriptor handles them again, including conditional commands.
However, they are not always handled perfectly so to avoid any problems, it is
best if you do not use commented commands.

2.2.2 Errors
Note that the editor is fairly sensitive: missing out an "=", for example, can
cause a command to go unrecognised. You can check to see if a script
contains any problems by compiling it. You can do this in one of three ways:
select "Compile" from the Build menu, press Ctrl-Shift-B, or save the script in
.XML format, which will cause the editor to automatically attempt to compile it.
Errors and warnings will appear in the Status Box beneath the Script Editor,
and where possible, problem lines will be highlighted in red, like so:

15

Notice that if the compiler does not recognise a command, it will tell you that it
is "not a valid expression" and tell you which line has the problem. These are
errors and mean that the script has problems that prevent it from being
compiled; you cannot save a script to .XML format in this state. Occasionally
you might also get compiler warnings, which are less critical errors; these do
not prevent a script from being saved, but may indicate a problem that still
needs to be solved. For example, if you have a script call inside your script
(i.e. a "call script" command) and the script you are calling does not exist,

16

then the compiler will generate a warning to tell you that it could not check the
parameters for that script.

2.3 Object List

The Object List on the right hand side of the interface is there to make it
possible to write scripts without memorising all 800+ script commands, not to
mention the hundreds or even thousands of wares, ships, stations, ship
commands and so forth. It has three modes, selectable using the buttons
above it. In the first mode, the List will show all the script commands available,
sorted into the appropriate categories. Double clicking on any of these
commands will copy it into the Script Editor at the current cursor position; you

17

will then need to replace any parameters (these are the parts surrounded by
<angle brackets>) with the appropriate data - variables, constants, literals etc.
Ideally you would put the correct type of parameter in; putting a string where
the command expects a <Var/Number>, for example, is not advised. Unlike
the ingame script editor, where it is virtually impossible to put the wrong type
of parameter in, the external editor does very little checking of parameters: it
is up to you not to do something stupid.

In the second mode, the Object List displays all the possible Object
Commands - these are ship or station commands.

These are also divided up into categories, just like the script commands.
Notice how some of the commands have more commands underneath them;

18

the normal name of a command is the built-in X3 name, and if that command
has been given a new name in a mod or in a script's language file, then that
name is shown beneath it. If there are multiple such names, then it means
there is a conflict - you have more than one script trying to use this command
slot. I have no idea which will end up as the name used in game, but as far as
the external script editor is concerned, it makes little difference which you
choose; if you are concerned, use the built-in name instead. Just as with
script commands, double clicking on a command name will copy it into the
Script Editor, except surrounded by {curly braces}, since object commands
are Literals.

The third and final mode is the Object mode:

19

This shows all the various objects and entities you can use in the script:

• Wares - these are things you can put in your ship, such as weapons,
cargo, and command software.

• Ships - these are ship types, e.g. the Argon Buster.
• Stations - station types, e.g. Teladi Trading Station.
• Races – alien races etc.
• Object Classes - types of objects, e.g. Big Ship, M5, Equipment Dock,

UFO, Space Fly. Note that the SQUASH Mine in this list has "(object
class)" after it; this is to distinguish it from the Ware of the same name.

• Flight Returns - these are constants used in a lot of fight commands.
• Formations – these are constants used especially in formation flight

commands.
• Data Types - the built in names for different data types. Use these if

you're using "is datatyp" script commands.
• Relations - Friend, Foe, Neutral
• Serials - these are the extra bits on the names of stations, e.g. Solar

Power Plant Alpha. Basically a list of Greek letter names; for some
reason, Omega is included twice.

• Transport Classes - the cargo size indicators: S, M, L, XL, ST.
• Sector Names - just as it says on the tin, these are the names of the

sectors in the game. You should ideally avoid using these wherever
possible, for two reasons: firstly, if someone is using a custom galaxy,
those sectors might not exist; secondly, using a sector name directly in
a script causes X3 to load it in a different way, and sometimes this can
break with externally edited scripts.

Once again, double clicking copies it into the Script Editor as a {Literal}.

2.3.1 Duplicates
You may notice that a lot of entries in the Object list - especially ships and
wares - have numbers after their names. This is a workaround for a major
problem any external script editor faces. In X3, there are often lots of objects
with the same name; several Argon Busters, for example, or two ores named
Nividium. There is no way for Exscriptor to be able to distinguish "Nividium"
from "Nividium". In the ingame editor, this isn't a problem (for the game, at
least - it's still puzzling for the user) since you're selecting items from a list that
the game can convert internally to the correct entity. Externally, this is not
possible.

So, to solve the problem, any duplicates are given unique names by adding
numbers after the original name, e.g. "Argon Buster 7_6" or "Nividium 15_12".
Usually the numbers afterwards represent the maintype and subtype of the
object; e.g. the Argon Buster is a ship (maintype 7) with several possible
subtypes, including 6; the two Nividiums include an ore (maintype 15) and an
object in the "random junk" category (maintype 12) which includes special
objects like "water", "cyborgs", or the "black crystal" you have to pick up as
part of the plot. In that particular case you will almost always want to use the

20

maintype 15 one, but for the most part you'll have to figure out the correct
object to choose yourself. If it's a custom object you've added yourself this
shouldn't be a problem, but in the case of the Argon Buster, the only way to
know for sure is to create a test script ingame creating one of each so you can
actually see what they all are.

2.4 Preprocessor macros
Version 1.012 of the Exscriptor introduced the concept of preprocessor
macros. These are "fake" script commands – commands that you can use in
the Exscriptor but which do not exist in the ingame editor. The idea is that you
can use these commands as shortcuts, automating common scripting tasks
like looping through or declaring an array.

The preprocessor commands can be found at the bottom of the script
command list in the Object List. Currently, the four commands available are
as follows:

• foreach <RetVar> in <Array>
• for <RetVar> = <Var/Number> to <Var/Number> inc <Va r/Number>
• for <RetVar> = <Var/Number> to <Var/Number> dec <Va r/Number>
• dim <RetVar> = { <Value>, <Value>, <Value> }

The foreach command allows you to loop through all the items in a variable,
and it is equivalent to the following script code:

$i = size of array $array
while $i

dec $i =
$value = $array[$i]

The for command cycles through a set of numbers. For example:

for $n = 0 to 10 inc 1

is equivalent to:

$n = 0 - 1
while $n < 10

 $n = $n + 1

You can use the "inc" version if you want to count up and the "dec" version if
you want to count down. Notice that the for loops will stop before they reach
the final value – so a for loop from 0 to 10 starts on 0 but finishes on 9. In
other words, the upper boundary is not inclusive, but the lower boundary is.

Finally, the dim command declares and initialises an array with a set of
values. You can have as many values as you like, not just three (as long as
it's more than one). For example:

dim $array = { $x, $y, [TRUE], 'jelly bean', 123 }

21

is expanded to

$array = array alloc: size=5
$array[0] = $x
$array[1] = $y
$array[2] = [TRUE]
$array[3] = 'jelly bean'
$array[4] = 123

When you use a preprocessor command, the Exscriptor will automatically
expand it before compiling. However, there is also the option (in the Options)
for "Enable macro post-processing", which will compact the commands back
down if compilation is successful. So for example, the following code:

for $n = 10 to 0 dec 2
$x = $x + $n

end

gets expanded to:

*- for $n = 10 to 0 dec 2
$n = 10 + 2
while $n > 0

 $n = $n – 2
 $x = $x + $n

 end

prior to compilation. The code is then checked and compiled, and if post-
processing is enabled and the compiler detects no errors, the Exscriptor will
reverse the macro expansion back down to the original form:

for $n = 10 to 0 dec 2
$x = $x + $n

end

making it look as if the macro expansion never took place. You can of course
turn this feature off, in which case compiling will always expand the macros
and they will remain expanded. This happens automatically if any errors are
detected by the compiler, allowing you to check all of the code.

2.5 Options Menu
The Options Menu allows you to set the options which determine the
Exscriptor's behaviour. The menu itself is shown on the next page. The first
tab box allows you to locate the X2/X3/TC/AP directories and the directories
where you keep your scripts. The first box (game dir) especially is very
important as without this path, the Exscriptor will be unable to find the game
data files and thus will not be able to load the data. Usually, the script
directory will be inside the X2 / X3 / TC / AP directory, so typing in the game
directory box will automatically be copied into the script directory box;
however, you can always override this yourself by typing or selecting a new
script directory. You can click the Browse buttons if you want to locate the
directories yourself rather than just typing them in.

22

This section also includes a field where you can locate a mod cat/dat file to
use (e.g. one in the mods directory). This allows Exscriptor to load in mod
data without having to unpack it first. However, you will need to restart the
Exscriptor for this to take effect.

Next are some check boxes that determine user interface behaviour:

• Syntax Highlighting – this turns syntax highlighting (colouring) on/off.
• Auto-Increment version – this increments the script version every time you

save.
• Auto-open empty script – when enabled, if you close all the scripts, a new

empty one will be created.
• Enabling macro post-processing – when on, macros will be recondensed

after compilation (assuming it was successful).
• Make backups when saving – copy the script file to a BAK file of the same

name before saving to make a backup. Note that it is up to you to then
restore the file (by deleting the new, incorrect one and renaming the old
one).

• Autocomplete is case sensitive – if checked, the autocomplete box will be
case sensitive.

• Check for Script Changes - if checked, Exscriptor will prompt you to
update when it detects that a script file you are currently editing has been
changed outside the editor. Note: this can be a bit buggy and sometimes
will continue to prompt even when there are no changes. If this happens,
just turn this option off.

• Indent Comments - you can also choose whether or not comments get
indented with the rest of the code.

Next, there is also the language file selection box, allowing you to select
which set of data files to use. This is the same as selecting the language
directly from the menu.

23

Finally, on the right hand side is a set of boxes and buttons to allow you to
change the appearance of the Exscriptor. The three buttons for each one are
the foreground colour, background colour, and the font; you can change these
for the Script Editor (though the foreground – i.e. text – colour will only show if
you are not using syntax highlighting), the Object List, the Results/Status Box,
the Script information beneath the Object List, Autocomplete and the Conflict
Viewer.

Your options will be saved when you close the Exscriptor, so you should only
need to set your preferences once; the Options menu will automatically
appear when starting the Exscriptor if it cannot find these saved settings.

2.6 Script Comparator
As of V1.014, there is now a script compare function in the Exscriptor. You
can use this to look for (text) differences between two scripts. To do so, first
open a script as normal (this will be the script you want to change) and then
choose "Compare with" from the View menu. You will be asked to select
another script file, and then a new window will open comparing the two, as
below:

Differences will be highlighted in red. As you scroll down using either script
window, the other window should scroll down at the same time, allowing for
easier comparison. You can change the text in the left-hand window but
whenever you change text it will need recomparing – simply press the big
"Compare" button at the bottom. You cannot edit text in the right-hand
window, however. When you close the window (which you must to return to
the main screen), your changes will be reflected in the original script. At the
bottom, the script names and command numbers are also displayed; you can
only change the command number of the left-hand script.

24

2.7 Conflict Viewer

From V1.025 onwards, in the Tools menu there is a new utility called the
Conflict Viewer. This opens up a simple window, shown below, that indicates
all of the conflicts in the language files read in by the Exscriptor. Race names,
Object names (ships, wares etc), Commands, and Sector Names are all
included.

The structure of the tree is as follows: firstly is the Page ID. For example,
1266 contains Race Names and 17 contains Object names. Beneath each of
these are all the IDs in that page that have conflicts, i.e. more than one file
using the same ID. If the ID is present in the main language file (e.g.
440001.xml) then the 440001 name will be used to give you some more
information on what the ID means. Underneath each ID is a list of every file
that uses that ID and what name they use. For example, in the screenshot
below, you can see that two files – 447212 and 447216 – use the ID 10813 in
the Object Name page. The value used by the Exscriptor is marked IN USE
(and is from the last file read in).

25

2.8 Support for multiple games (X2/X3/TC/AP)

Version 1.031 of the Exscriptor introduced full support for X2. This means you
can now use the program with X2 as well as with X3, including loading the X2
game data files and loading/creating X2 scripts.

V1.2.0 added X3TC support and V1.2.40 also added X3AP support. However,
because there are several differences between scripts from different games (a
lot less available commands for instance – X2 has less than half as many as
X3AP), and because the game data is obviously very different, you cannot
edit both types at the same time. Instead, the Exscriptor has multiple modes:
an X2 mode, an X3 mode, an X3TC mode, and an X3AP mode, accessed
through the Tools menu. It can function in only one at a time. Attempting to
load an X3 file if you are in X2 mode will cause an error, and similarly loading
an X3TC file in X3 mode etc; loading a script from an earlier game in a higher
game mode is allowed, but be aware that there are still some rare differences
that may cause problems in this case.

Changing modes is done via the Tools menu – simply choose "X2 Mode" or
"X3 Mode" etc. Obviously this requires that you have set the appropriate
directories in the Options menu, otherwise the Exscriptor will not be able to
find the game data.

IMPORTANT
To use X3AP, you also need to make sure you have the path to an X3TC
install set up. The program will prompt you if you forget to do this.

2.9 Script file updating
Version 1.2.32 adds a new awareness to Exscriptor so that it will now tell you
when a file you are working on has been updated. If you have not edited the
file yet, it will ask you if you want to refresh the file (you can tell it to ignore it if
you want). If you have edited it yourself, it will not tell you until you try to save
the file, at which point it will warn you that it has been updated since it had
been loaded originally.

This functionality sometimes gets a bit... over-enthusiastic, in which case you
can turn it off in the Options menu.

26

3 Using the Command Line version

As of V1.2.32, Exscriptor also has a command line version available called
ExscriptCmd.exe . This is a simpler version of the tool capable of compiling
and decompiling script files from the command line, though it does not have
the full range of features (e.g. the preprocessor) that the main GUI has.

Command line usage is as follows:

exscriptcmd <game dir> <input file> [output file] [options]

• <game dir> is the directory of the game. The tool needs this to be able to
find the game's data files. It should be a path, e.g. C:\X3TC.

• <input file> is the name of the input file. You can use wildcards here, e.g.
*.txt or *.xml, or even script?.dosomething.*.xml etc. Valid input files are
.txt files, .xml files, or .pck files; the tool will figure out what to do with those
files based on the extension: .txt files are compiled to .xml, .xml or .pck
files are decompiled to .txt.

• [output file] is an optional output file. If you have a single input file, you can
provide an output file to produce output to a different filename. By default,
the tool will use the same file name but with a different extension.

• [options] are one or more options, as described below:
• mod=<filename> Allows a mod .cat/.dat to be used
• game=<X2|X3|X3TC|X3AP>

Allows compiling to a different game format
(X3AP is assumed to be the default).

The tool should provide messages and warnings etc as appropriate when it
runs. Note that it still takes a few seconds to load the game data, but this is
only done once with each run, e.g. if you wish to compile many files, use
wildcards rather than run the tool multiple times.

Note that the command line tool still requires all the same data files as the
main GUI version, including both the parameter .XML files and the various
.DLL files, so do not remove these!

Remember that the text files used must be in the text file format used by
Exscriptor. The main difference is that it includes a header to add the extra
information needed. For completeness, the header for the text file is as
follows:

test.script.1 � name
0 � command
Last mission for M0 � description
194 � version
1 � number of arguments
name|value|9|name of ship � argument
---END-OF-METADATA---

27

4 Known bugs and other pernicious problems

Debugging, v. a programming activity analogous to removing all of the
needles from a haystack while looking through a microscope.

As every programmer will tell you, there are no bug-free programs. This one is
unfortunately no exception; quite the opposite, in fact. Despite my efforts,
there are still plenty of problems – some important, some not. Hopefully any
errors will be handled without Exscriptor crashing; in addition, in the case of
something going wrong, an errorlog.txt file will be created in the
Exscriptor directory. The information within will hopefully help diagnose the
error.

The main (known) bugs are listed below.

4.1 Bugs in the user interface

4.1.1 Syntax Highlighting
This doesn't always work quite right. For the most part it will colour everything
correctly, but occasionally it gets a bit confused, either refusing to colour
something or colouring something when it shouldn't. For example:

$message = sprintf: pageid =$page.ID textid =2000 , $arg1 , $arg2 ,
null , null , null

It also does this when using numbers as an array index, e.g.

$array [5]

There are other, less cosmetic problems. For example, occasionally you may
also get strings of numbers appearing for no reason when you delete or add
text, a bug I have never been quite able to eliminate completely.

4.1.2 Flickering
Sometimes the text in the main Script Editor window will flicker; this often
happens when you undo/redo or insert something from the Object List, for
example. This is just the code being updated and rehighlighted and is
(currently) unavoidable.

4.1.3 Undo / Redo
Again, partly due to the syntax highlighting, the Undo/Redo behaviour is
sometimes a little strange; often it takes a couple of undos or redos. If the
highlighting is turned off this behaves more correctly. Also, you cannot
undo/redo more than the last 50 changes (in each script).

28

4.1.4 Copy/Paste
Copying and pasting using the usual shortcuts (Ctrl-C, Ctrl-X, Ctrl-P) only
works in the Script Editor box. Copying or pasting from the Status Box should
work too, but nowhere else. If you wish to copy/paste you should also be able
to use either the alternative shortcuts (Ctrl-Insert, Shift-Delete, Shift-Insert
respectively) or the mouse right-click menu – usually at least one of the two
methods work.

4.1.5 Red error highlighting
When the compiler detects an error, it does not always succeed in highlighting
the line in red. Sometimes this is because the compiler does not know which
line the error occurred on; sometimes because it reaches an error earlier on
that means it cannot continue.

4.1.6 Interrupt signs (@)
Interrupt signs are completely ignored by the compiler and the decompiler,
mainly because they're a pain. Commands can still have them, and you can
still type them, but you don't need to – they won't be displayed when you load
a script and they won't be included by the compiler, either.

4.1.7 Find/Replace
Despite my best efforts, the Find/Replace dialogue boxes continue to frustrate
me by manifesting a seemingly infinite number of small but annoying bugs. No
matter how many times I fix it, something else goes wrong. So do not be
surprised if you find it acting strangely from time to time; having to click "find"
more than once before it realises another item exists is not uncommon, for
example.

4.1.8 Non-standard system fonts/sizes
Another long-running issue has been with non-standard font sizes or types.
Hopefully this should be fixed in V1.2.40 but you may still experience some
issues, e.g. text boxes being slightly covered by other controls etc.

4.1.9 Using CTRL + mouse wheel to resize the font
This doesn't work, and never has, because it's never been clear to me how it
works or how to get control over the process (it seems to be built in
functionality hidden from the programmer). Unfortunately you have to use the
Options Menu to set the fonts instead.

29

4.2 Bugs in the compiler/decompiler

These are potentially more serious than the interface bugs. However, I tested
the compiler on over 1200 scripts, including the XTM scripts, comparing the
resulting code against the original; a few couldn't be opened (and thus
couldn't be compiled), and of the rest, only about 1% showed any differences,
mostly only minor difference – using ` instead of ', for example, or having
variables in a different order. Still, there are some outstanding problems:

4.2.1 Random value from 0 to …
This command comes in two forms: from 0 to a max value, and from a min
value to a max value. However, when the minimum value is set as 0, it is
impossible to distinguish between the two commands. The compiler does not
always choose the same one as the ISE in these cases, leading to a minor
difference in the code. Fortunately, this makes no difference to the functioning
of the script, but if you wish to change the lower value in the ISE you may
need to change the entire command.

4.2.2 Apostrophes
For various reasons, the compiler replaces normal ' apostrophes with ` ones
(one reason being that you cannot have ' in a string in Exscriptor). This can
sometimes lead to differences with the original.

4.2.3 The Infamous and Enigmatic 1185
There is one command in the script editor, with ID 1185, that plagued me
incessantly. According to the language files, the command is this:

START %0->command %1 : arg1=%2, arg2=%3, arg3=%4, a rg4=%5

The problem is that this is exactly the same as command 514, also:

START %0 command %1 : arg1=%2, arg2=%3, arg3=%4, ar g4=%5

Or so it looks, from the language file. It turns out that internally – and in some
scripts – the 1185 version can take five arguments, i.e.:

 START %0->command %1 : arg1=%2, arg2=%3, arg3=%4, arg4=%5, arg5=%6

Except it doesn't always, and when it doesn't, that missing last parameter is
apparently ignored. I've tried to add in special code to handle this command,
but to avoid any problems, it's best to use the 4 argument version (514) if
possible.

30

4.2.4 Bad XML
Some scripts evidently don't quite conform to standard XML as well as they
should, and Exscriptor is much more sensitive about this than X3 apparently
is. This happens especially when you use special characters like "<", ">", or
"&" somewhere in your script. If you wrote the script in the external script
editor, this shouldn't be a problem, but if it comes from the ISE or somewhere
else, it can sometimes cause load errors.

Note this can also apply to the language files too - if you get an error like this:

- Error while reading xml file H:\X3 Reunion\t\441234.xml: An error occurred while parsing EntityName. Line
12, position 34.

It means you are the proud owner of an invalid XML file. In these cases, the
Exscriptor will not be able to load the file – and so anything important in it will
also be absent. You will have to fix the problem (usually an & or something)
manually so that the file can be loaded. To do this you just need to convert the
symbols, e.g.:

& � &
< � <
> � >

You can also check to make sure that an XML file is valid by loading it in a
web browser; most will tell you if the file is invalid in some way. X3 itself
seems to be very relaxed when it comes to XML and accepts a lot of errors.

4.2.5 XML Output differences
If you open up an XML script file in a web browser, it will show you the code
(as long as the x2script.xsl file is present). Files produced by Exscriptor
exhibit a few minor differences to those produced by the ISE. Literals are
often a little different, e.g. whereas the ISE might say "Buster", the externally
produced script will say "Argon Buster"; similarly, duplicate literals will include
their identifying numbers in externally produced scripts. The ISE also tends to
produce scripts with two equals signs, e.g.

$Name = = get random name: race=$Race

Externally produced scripts reduce this to a single equals but occasionally
(rarely) it seems to omit any equals sign. Finally, spacing and the green
highlighting is often subtly different. However, all of these discrepancies are
purely cosmetic and have no effect on the running of the script.

4.2.6 Unresolved literals
You may get an error that tells you that there is an "Unresolved literal". This
means that you have either typed in a literal (the things in { curly braces })
that is not recognised, e.g. a ship type that doesn't exist, or that you have
loaded a script that contains an unrecognised literal; in which case, it will

31

appear as {?}. This is almost always because of a missing or unreadable
language file (or, occasionally, something missing in one of the Type files). If
you're loading someone else's script, there's not much you can do about this.

4.2.7 No return value
If you're using a command that expects a return value but you want to ignore
it, you still need to put the '='. For example:

$retval = [THIS]->call script 'any.script':

is fine, but

 [THIS]->call script 'any.script':

is not; you need to add the =

= [THIS]->call script 'any.script':

otherwise it won't be recognised.

4.2.9 Commented commands
As of v1.023, the Exscriptor once again handles commented commands
(commands prefixed with a *) during compilation, including conditional
commands (if, while etc). This means you can "uncomment" them again in the
ISE. I restored this feature to deal with the problem of XML symbols
(especially ">") being corrupted by X3. However, this feature is not
guaranteed to be 100% perfect – there's a lot that can and probably will go
wrong. One known problem is that conditional commands do not work if they
have more than one space after the * (e.g. "* if $config"); in these cases
they get converted to normal text comments. My advice is to avoid using
commenting out commands wherever possible.

4.2.10 Using double quotes in comments
In short, please do not do this. This applies to X3 as well. Comments are
usually stored in script files as simple text within double quotes, e.g.

<sval type="string" val="Your comment here" />

If you put double quotes " " around your comment, these get doubled:

<sval type="string" val=""Your comment here"" />

which breaks everything because the file is no longer valid XML.

32

4.2.11 Variable checker
Exscriptor will attempt to check when a variable is being used before being
defined or alternatively not being used at all. However, it frequently gets this
wrong and is easily fooled. Apart from instances where it simply gets it wrong
(expression assignments on the first line or two often suffer from mistaken
"variable is being used before being assigned" bugs, for example), there are
also situations where it is prohibitively difficult to check for sure, e.g.:

gosub subroutine
$a = $b
return $a

subroutine:
$b = 10
endsub

This situation will cause the Exscriptor to believe that $b is being used before
being defined, when in fact it's defined later, in the subroutine. Short of
analysing the program flow, this is pretty much unavoidable unfortunately.

In summary, the variable checker warnings should be taken as just that:
warnings, advice to check to make sure a variable is being used correctly. It
does not necessarily indicate an error on your part.

4.2.12 Ambiguous names
There are many ambiguous names in X3 (especially TC). For example, the
words "Navigation Relay Satellite" can refer to a ship, a ware, and an object
class. Though Exscriptor can handle duplicates of the same type (e.g. the
many Argon Busters present in X3) it struggles to handles duplicates of
different types. There is a limit to how far this can be solved in V1.2 but
hopefully V2 will handle this sort of thing better.

In the mean time, I have tried to sort out the worst ambiguities (laser towers,
satellites, fighter drones etc) so that they are all separate. Wares normally
have their language ID numbers after them, ships will have maintype/subtype
and always a race name (e.g. "Argon Navigation Relay Satellite"), and
confusing object classes will sometimes be appended with "(object class)".
Hopefully that will sort out the main problems, but there may be others too.

4.2.13 Escape characters in strings
Strings in the scripting engine are delimited by apostrophes, i.e. the '
character. If you wish to include an apostrophe within a string, then you
should use the backslash as an escape character like so:

$x = 'This is a \' valid string'

Note, however, that the backslash only functions as an escape character in
this specific instance. No other escape character sequences are recognised
and the string:

33

$x = 'This is a \\ string with two slashes in it'

is exactly as it appears and will contain two backslashes, not one.

4.2.14 Loading mods in cat/dat files
This has historically been somewhat problematic in Exscriptor, though the
functionality should work. However, if the editor fails to pick up your modded
TFiles correctly, there are other options you can try, e.g. setting up your mod
as a false patch or simply unpacking the mod to the normal directories. In
both cases, Exscriptor should (in theory) pick up the extra files correctly.

34

5 Behind the scenes

5.1 Introduction
This section covers the sort of technical, behind the scenes information that
most people are unlikely to be interested in. However, since this project has
taken a significant amount of time and effort, and since along the way I have
acquired a lot of information (most of it learnt the hard way), I feel entitled to
write it all down somewhere. Besides, it might help someone else produce a
better editor in the future.

5.2 The X3 Files
There are several types of file that are necessary to understand the scripts in
X3. First, obviously, are the scripts themselves (described next). However, the
part of the script that does all the work, the codearray, contains virtually no
text – it's mostly numbers and XML. These numbers refer to things in other
files, and so to understand the scripts, you need to understand the other files
too.

5.2.1 Language Files
Most important are the language files. These are the files found in the "\t"
directory of your X3 folder (or in the 01.dat, 02.dat, 03.dat … etc files, which
can be unpacked). The language files have names like 440001.xml or
440001.pck. The first two digits are the language (44 being English), the rest
the file ID which is used by the "load text" scripting command to load them.
These are simple XML files containing the text definitions for virtually
everything in the game – wares, sectors, ships, script commands, everything.
Almost everything will have a language ID which is an index into some part of
one of these files; for example, as mentioned earlier, this command:

START %0 command %1 : arg1=%2, arg2=%3, arg3=%4, ar g4=%5

has the language ID 514, and you can find it in the script command section of
440001.xml, page 2003.

The important parts of the language files – i.e. the parts you need to know to
understand all the scripts – are as follows:

PAGE CONTENTS
7 This contains the names of all sectors in the game.

17 All wares, objects, ships, stations etc. Odd numbers are usually the
name and even numbers are the accompanying description. Note
that this is not usually the number used inside a script to refer to
these items, however (see maintype and subtype, below).

1266 Race names – Argon, Boron etc

35

2000 Script types, e.g. "Value", "Var/Number", "String" etc. These are
used in the descriptions of script commands, e.g. "RetVar" is the
return value of a command.

2001 Script operators – logical and mathematical operators, like +, *,
AND, OR, and so forth.

2002 Script constants – things like [THIS], [TRUE] and the various [Find]
constants.

2003 Script commands – the commands themselves, like "START %0
command %1: arg1=%2, arg2=%3, arg3=%4, arg4=%5" etc. The
percentage signs represent parameters.

2004 "Hidden" script commands – nothing exciting, just things like "end",
"else," and the comment symbols. These are not present in the
main part of the codearray, hence I call them the "hidden"
commands.

2005 Script command categories – General, Flight, Trade etc
2006 Script object classes – Ship, Big Ship, Station, M4, that sort of

thing.
2007 Script jump commands – called return variables or RetVars. These

include the humble "=" but also conditionals like "if", "while", and
"skip". These aren't true commands but actually more like modifiers
for expressions.

2008 Script object commands – ship / station command names, e.g.
COMMAND_RETURN_HOME.

2009 FLRETs – Flight command return values, constants used in flight
commands (especially combat commands).

2010 Long version of script object commands, e.g.
COMMAND_RETURN_HOME has long name "Return home". This
is what you see in your ship's menu in the game.

2011 Short version of script object commands – "FlyHome", for instance.
2012 Formation constants – delta, line etc
2013 Data types – the names of the actual data types used in scripts,

e.g. DATATYP_INT is a number.

Some of these pages have "extensions" that have been added in later
patches; these generally have the same page ID, but add 300000, e.g.
300007 contains the new sector names. You need to check for extended
versions of all the above, e.g. 302003 contains new script commands.

In Exscriptor, all of this data is stored centrally when the program first loads,
so it can decipher the scripts. It checks all language files (of the same
language), attempting to load the contents of them all; this means it can
include files added via mods or new scripts.

Some entries in the language files are actually references to other entries –
these look like this: {17, 1234}, which is a reference to page 17, id 1234.
Exscriptor can handle these to an extent, but if you have a reference to a
reference then it starts to get confused!

36

5.2.2 Type Files
The other set of files you need to understand are the Type files, found in the
"\Type" directory (at least when unpacked). Various editors, like the X3 Editor,
allow you to change these files, which contain information about ships, wares,
and stations. Whereas the language files only contained text, these contain
data about the various entities – speed of ships, shields on a station, that sort
of thing. The important ones are:

TYPE FILE MAINTYPE CONTENTS
TWareT 16 Contains technology objects – duplex/triplex

scanners, for example.
TWareM 15 Contains minerals/ores – nividium, ore, and

silicon.
TWareF 14 Processed foods – Cahoonas, BoFu, Space

weed etc
TWareB 13 Basic foodstuffs and other biological stuff –

Delexian wheat, for instance, or Argnu Beef
TWareN 12 Random junk, typically plot or mission related –

water, Black Crystal, Vacuum cleaners, Hand
Weapons, Wimbli's Trident

TWareE 11 Just energy cells
TMissiles 10 Missiles, obviously
TShields 9 Shields
TLaser 8 Lasers
TShips 7 All ships
TFactories 6 Normal factories, shipyards
TDocks 5 Trading docks, equipment docks etc

Each of the items in these files will have a specific maintype, which is
essentially the category they fall into. In addition to the maintype, each item
has a subtype – effectively its index in its Type file, so the first item has
subtype 0, the next subtype 1, and so on. However, this count does not
include comments (beginning with //) or lines that have less than six entries.
The only other thing of importance (for scripting purposes) in most of these
files is invariably the 7th entry in each line, and this is the index into the
language file (page id 17 – wares & ships etc).

In some cases, extra info is needed; for ships and stations, we also need the
race (the 46th entry in TShips, 14th in TDocks/TFactories). For ships we need
the variant (Vanguard, Sentinel etc), which is the 51st entry (and needs 10000
adding to it to get the entry into the Language file); for stations, we also need
the cargo size (M, L, XL etc), which is the 18th entry and is 2 (M), 5 (L), or 10
(XL).

The maintype and subtype are how scripts refer to all ships, wares, and
stations. The two numbers are combined into a 4 byte int: the lower two bytes
contain the subtype and the upper two bytes contain the maintype. Thus the
Argon Buster (or one of them, at least), which has maintype 7 (ships) and
subtype 6, will have the following number as its identifier:

37

7 | 6
0000 0000 0000 0111 | 0000 0000 0000 0110

= 458758

Rather than use this as the unique identifier for duplicates, however, I used
the maintype and subtype since it's easier to understand. Even so, it's a
complex process converting 458758 into "Argon Buster":

1. Break down the number into maintype / subtype
2. Obtain the appropriate object list from the maintype (ships, in this case)
3. Find the language ID from the subtype (3141)
4. Look up that entry in the language files to get the name

Doing it in reverse, when compiling a script, isn't much easier.

Incidentally, the common error "Unresolved literal" occurs when this process
breaks down; if the maintype/subtype combo is not present, or the language
ID is missing, then the decompiler or compiler won't be able to identify the
literal and will complain; when loading a script, the literal appears as just {?}.

5.2.3 Sectors
There is one other type of index: sectors. Sectors are exceptions to virtually
every rule in the script file. Firstly, if you include a "raw sector" – a reference
to an actual sector, like "Argon Prime", then a special flag is set and the game
has to load it differently. Secondly, whenever a script command mentions a
data type, it will use the ID from page 2013 – except for sectors, whose data
type is 65544 – 216 + 8, the normal datatype for a sector. I assume this is to
make it easier for the game to detect raw sectors. And finally, the sectors
themselves use neither a normal language ID nor the maintype/subtype
combo; instead, their ID is based on the coordinates of the sector. For
example, Home of Light is at coordinates X = 2, Y = 5 (if you start with
Kingdom End being 1,1). The Y coordinate makes up the rightmost two bytes,
the X coordinate the leftmost, and we need to subtract 1 so it starts from 0:

1 | 4
0000 0000 0000 0001 | 0000 0000 0000 0100

= 65540

Fortunately, these are relatively easily related back to the language file ID
(and therefore the sector name), since they're stored by coordinate in the
language file. All sectors in the language file have IDs starting 102, then the Y
coordinate, and finally the X coordinate (two digits each). So Kingdom End is
1020101, and Home of Light is 1020502.

38

5.2.4 Exscriptor-specific files
There are also couple of types of data files specific to Exscriptor, which can
be found in the same directory as the editor. The first are the
{X2/X3/X3TC/X3AP}CommandList.txt files, which contain all the script
commands listed in their correct categories and with their correct parameters
shown (thus differing from the lists in the language file). This is used to display
the commands in the Object List.

The other set of files are the {X2/X3/X3TC/X3AP}
CommandParameters.xml files. These is much more important as they get
used by the decompiler and compiler to help determine which parameter goes
where – which parameter is a RefObj, which is a RetVar, and so forth.

It is actually possible to add new commands to Exscriptor by editing these two
files, though if the commands were at all unusual (e.g. a new type of call
command) this would not necessarily work.

39

5.3 Structure of the Script XML files

5.3.1 Basics
Once again, I would like to give thanks to all the people who posted in this
thread:

http://forum.egosoft.com/viewtopic.php?t=89990&postdays=0&postorder=asc
&start=0

without whom this whole endeavour would probably not have been possible.
Much of the information below was based on that thread; the rest was
gleaned via experimentation and just generally poking about. There are still
some things that are a bit uncertain, and definitely many things that are
inconsistent, but for the most part the following information should be
accurate.

So, to begin. Inside a script XML file, you have several main parts. At the
beginning is the script's metadata, namely:

• the script's name;
• its version number;
• the script engine version (more on this in a moment);
• the description of the script.

The only tricky one here is the engine version; the rest is accessible from the
ISE (ingame script editor). This value presumably tells the game what version
of the engine the script is written for. Versions beginning with 2 are for X2:
The Threat, e.g. 25 is (I believe) X2 version 1.4. Some of the old X2 scripts
were moved across to X3 and you can still see these older values in their
natural habitat; for the most part, they're still compatible with X3 (though I
suspect the reverse is not usually true). Versions beginning with 3 are for X3:
Reunion; 32 appears to be X3 version 2.0, and 33 is version 2.5. In any case,
as long as you don't try to use a newer script in an older version, I don't think
this number has much of an effect on anything.

The next section of the file is for the script arguments. Each argument has an
index, a name, a type (from the "script types" – page 2000 of the language
file), and a description. These serve as variables in the rest of the script, their
IDs taking precedence; if there are four arguments, the first variable will have
ID 4 (it starts from 0).

Next is the SourceText. This is the bit you see when you open up the script
file in a web browser. Each line of code is represented separately: first the line
number, then the indentation, then the code itself, suitably highlighted (<var>
is green, <text> is white, <comment> is the grey comment colour). Note that
symbols are usually changed, e.g. ">" becomes > ; and "&" becomes

40

& etc. Also, all spaces – including those in the indentation – are replaced
by .

Of course, all of this information is cosmetic. You can take it all out of a script
and the game will still accept it as long as you remember to include the most
important part: the codearray.

5.3.2 The Codearray
The codearray is essentially ten sets of numbers, and it duplicates all of the
information already contained in the file in text format in a form more easily
read in by X3. The ten entries are as follows:

1. Script name. This is the important one, and determines how it shows up in
game.

2. Engine version (e.g. 33 for X3 2.5, 25 for X2 1.4)
3. Script description.
4. Script version.
5. Loading flag (see below).
6. List of variables in the script – just their names, their IDs are implicit based

on the ordering.
7. The codearray within the codearray: this contains the script commands

themselves.
8. Script arguments – an int and a description. The int is an index into the

variable list (which gives you the name).
9. "Hidden" commands – things like "end", "else", empty lines, and

comments.
10. The command name – usually a number (which in turn is an index into the

language file, page 2008), but occasionally a string.

The complex ones are #5, #7, and #9. The fifth entry determines how (or
indeed whether) X3 loads this script. Usually, in 99% of cases, this is 0 and
has no effect; if the script contains a reference to a raw sector (like referring
directly to Home of Light), the this value is 2, and presumably X3 waits until it
has loaded all the sectors in before reading in this script. The general theory
is that if this value is 1, then the script is not loaded (technically, it's not even
saved) because it contains a reference to an active object – a spaceship flying
around somewhere, for example. This is impossible to check unless the game
is already running so the script cannot refer to it.

41

5.4 A Detailed Look at the Codearray

The codearray-in-the-codearray is the most important part, as this contains all
the script commands themselves. Each command is represented as an array
with, in general, the following structure:

• First is the command ID, which is a language file index
• Next is usually the RefObj – the object to which the command is applied.

For example, in [THIS]->get sector , [THIS] is the RefObj. It's easily
recognised because it has the arrow next to it (in programming terms, this
is like calling a member function using an object reference or pointer). This
comes in two parts – first is the type identifier, almost always either
131074 (for variables) or 131075 (for constants, like [THIS]). I've never
been quite sure what these are supposed to refer to. The second part is
either the variable ID or the language file ID of the constant.

• The third element is usually the return variable, this time only a single
entry. It can never be 131075 since you cannot assign to a constant, so it
has to be a variable, specified by the variable ID. There is an exception to
this rule, though (see Conditional Statements below).

• Finally, all the parameters are given, all in two parts – type followed by ID.
These can be variables (131074), constants (131075), or other data types
(see the language IDs in page 2013), followed by a language ID or
variable ID.

Note that you can see the order of the parameters (indeed, the order of
everything in the array) by checking the script command itself in the language
file. For example, the despised 1185:

START %0->command %1 : arg1=%2, arg2=%3, arg3=%4, a rg4=%5, arg5=%6

Where present, the RefObj is always %0 (with one exception) – the first entry.
RetVars are then usually %1 (the second entry), unless there is no RefObj, in
which case they're usually %0 instead. Then the other parameters come in
the order they're given in the language file.

This general structure holds for the vast majority of commands, but there are
some that don't quite fit this structure: expressions (ID 104) and calls (ID 102)
in particular.

Calls aren't too complex; their language entry looks like this:

%1 %2->call script %0 :

The %0 parameter is actually the script name you're calling, and %1 is then
the RetVar and %2 the RefObj. This is, I believe, the only time that the RetVar
comes before the RefObj. Then there are up to 5 (?) extra parameters
possible on the end, depending on the script you're calling. Exscriptor
attempts to load up the other script to check, but the ISE has no such
problems. These are then displayed in the ISE according to the script

42

arguments of the called script, but in Exscriptor you can give the parameters
any name you like (the names aren't checked, only the number). This means
in practice that call commands can be of varying length in the codearray.

5.4.1 Expressions
Expressions are, by far, the most complex and difficult script commands.
They're just so bizarre. They're also the most common type of script
command, which just makes them all the more troublesome. The language
entry of the expression command is simply:

%0%1

Helpful, isn't it? Basically, %0 is the return and %1 is the "expression", which
in practice can be almost anything. The general structure of an expression is
therefore:

1. 104 – Expression ID
2. Return value or conditional command; this is not in two parts, as there is

no need for a datatype. If the value is positive, then it's a variable ID; if it's
negative, it's a jump (explained below).

3. 1st expression section, in Reverse Polish (postfix) form. First entry is the
number of operands and operators. Each following item has two parts, a
datatype and then an ID. Adding two variables would be something like: 3,
131074, 1, 131074, 2, 15, 11 (where 15 is an operator and 11 is +).

4. 2nd expression section, in infix form. First entry is again the number of
operands and operators, followed by the single entries, one for each
operator and operand, in infix form. Operands are negative, operators are
positive (or 0, for ==). Using the same example, we might have something
like 3, -1, 11, -2. The operands are, I think, like indexes into the postfix
part:–1 is the first entry in the postfix array, the –2 is the second, and so
on.

As a full example, let's try the simple expression $z = $x + $y .

Variable IDs:
1 $x
2 $y
3 $z

<sval type =" array " size =" 13" >
 < sval type =" int " val =" 104" /> // Expression
 < sval type =" int " val =" 3" /> // $z (return var)
 < sval type =" int " val =" 3" /> // Number of parts
 < sval type =" int " val =" 131074 " /> // Variable
 < sval type =" int " val =" 1" /> // Var $x
 < sval type =" int " val =" 131074 " /> // Variable
 < sval type =" int " val =" 2" /> // Var $y
 < sval type =" int " val =" 15" /> // Operator
 < sval type =" int " val =" 11" /> // +

43

 < sval type =" int " val =" 3" /> // Number of parts
 < sval type =" int " val =" -1 " /> // First operand
 < sval type =" int " val =" 11" /> // +
 < sval type =" int " val =" -2 " /> // Second operand
</ sval >

I should also mention unary operators. Operators in expressions are listed in
the language file, page 2001. However, three of the operators – the bit
negation (~), negative (-), and logical negation signs (!) – are unary operators,
meaning they apply only to one operand. Apparently, their IDs are altered
slightly to make this clear, since the ISE adds 65536 to them. So the IDs of
these three signs, at least as they appear internally, are:

65554 ~
65555 -
65556 !

Parsing expressions is tricky enough; emitting the correct code is even
harder.

But there is one thing worse than an expression – a conditional expression.

5.4.2 Conditional Commands
As stated earlier, the return variable is always a single entry in the array – the
variable ID. However, sometimes this will be a negative number, and in that
case it is not a variable – it's a conditional jump. This can apply to any
command that returns something, but it's seen most frequently in expressions.

The negative number is a composite 8 byte number. The first four bytes are
always 255 (which is why the number is negative). The fifth byte is a value
indicating the type of jump – either jump-if-true or jump-if-false. So for
example:

if $x == [TRUE]

is a "jump-if-false" command, since if $x is not [TRUE], we jump to the next
else or end. An if not is a "jump-if-true" command. The values are 160 for
"jump-if-false" and 224 for "jump-if-true" (not commands). The eighth byte –
I'm leaving 6 and 7 for a moment – represents the actual command. This is an
index into the language file, page 2007; for example, an "if" is 3, a "while" is 9.
There is also the START command but this is a little different as it doesn't
jump anywhere.

The sixth and seventh bytes are the difficult ones. These determine the line
we're supposed to jump to. Note that these line numbers are a bit misleading:
they're like indexes into the codearray, not line numbers in the original script.
This is because the codearray line numbers do not include "hidden"
commands like "end" and "else" etc. So in effect we jump to the first "real"
command after the end, like so:

44

1 $sum = 0
2 $x = 10
3 while $x
4 $sum = $sum + $x
5 dec $x =
6 end
7 write to player logbook $sum

Line 6 is missing in the codearray, so the while actually jumps (if false) to line
7 (though it will say it's jumping to line 6).

Except it's a little more complex than that, because there are also hidden
jumps, command ID 112. These are just as the name implies: invisible goto
commands hidden in the codearray but not visible to the scripter. If we looked
at the above while loop in the code array, we'd really see this:

0 $sum = 0
1 $x = 10
2 while $x
3 $sum = $sum + $x
4 dec $x =
5 hidden goto 2
6 write to player logbook $sum

So when the code says it's jumping to line 6, it actually does mean line 6 in
this case. The situation is similar in an if-else statement:

0 if $x
1 * do something
2 hidden goto 5
3 else
4 * do something else
5 end Not present in codearray
5 write to player logbook $x

Hidden jumps need to be inserted automatically by the compiler, but only
once all of the commands have been parsed (otherwise, there's no way of
knowing where to jump to). In other words, it takes two passes to generate the
jump information.

5.4.3 Datatypes
A note on using datatype commands (e.g. "= is dataype [$value] =
{DATATYP_SHIP} "): these should have IDs as listed in the language XML
files from 0 to 26. However, instance datatypes – those that represent
instanced objects in the game universe like ships, sectors, stations, wings etc
– have 65536 added to them. Furthermore, VAR and CONST datatypes use
the values 131074 and 131075 as mentioned above.

45

5.5 "Hidden" commands

These make up the 9th element of the codearray. As already mentioned,
"hidden" commands are commands present to make it easier for users to read
the script but which are not present in the main part of the codearray (the 7th

element). These include things like comments and empty lines but also things
like "else", "break", "continue" and "end". The language file shows them all in
page 2004:

ID Command Explanation
1 * %0 A normal text comment
2 - An empty line
3 * A commented command
4 end The end of a while or if statement
5 else Part of an if-else
6 continue Continue command (returns to the previous while)
7 break Break command (breaks out of the current while)

101 %0: Label

and they are also present in the main script command section (2003) with the
same IDs.

The 9th section of the codearray lists all of these commands. Each entry
consists of a line number and then the ID from the table above; often that's it,
but for comments (both types) and labels, there's also a set of parameters.
So, while an "end" on line 124 would look like this:

<sval type =" array " size =" 2" >
<sval type =" int " val =" 124" />
<sval type =" int " val =" 4" />
</ sval >

a comment on line 99 would look like this:

<sval type =" array " size =" 3" >
<sval type =" int " val =" 99" />
<sval type =" int " val =" 1" />
<sval type =" string " val =" This is a comment on line 99 " />
</ sval >

Note that, once again, these line numbers are not the numbers you see in the
final script; these are indexes into the proper script codearray. The hidden
commands are inserted there. It's actually more complex than it sounds, since
as you insert commands the line numbers of subsequent commands change,
so you have to make sure you insert them in the right order. This is why you
will sometimes see consecutive hidden commands with the same line number
– they all get inserted at the same point, one after the other.

46

Commented commands are the most complex. These are, essentially, entire
script commands (just as in the main part of the codearray) that have been
moved to the hidden command list. The first two elements are still the line
number to insert to and the ID (3, for commented commands), but then the
rest is essentially just the script command as it would normally appear. There
are some exceptions, though; if a variable is used, it will appear as its name,
not using its ID (which may change when you uncomment the line). So rather
than

<sval type =" id " val =" 4" />

you might get

<sval type =" string " val =" aJellyBean " />

instead. Another curious thing is that jump commands are still fully formed but
apparently their destination is unused. Finally, expressions are also
considerably different: the second part of the codearray for an expression
(which shows the infix order) is absent, and instead the first part of the
codearray (the postfix part) is given, but reordered to make it infix. If this
sounds confusing, that's because it is. For example, take this expression:

$x = $y * 2

In a normal expression, the code array would be:

<sval type =" array " size =" 13" >
 < sval type =" int " val =" 104" /> // Expression
 < sval type =" int " val =" 0" /> // $x (return var)
 < sval type =" int " val =" 3" /> // Number of parts
 < sval type =" int " val =" 131074 " /> // Variable
 < sval type =" int " val =" 1" /> // Var $y
 < sval type =" int " val =" 4" /> // Literal (4 = int)
 < sval type =" int " val =" 2" /> // 2
 < sval type =" int " val =" 15" /> // Operator
 < sval type =" int " val =" 13" /> // *
 < sval type =" int " val =" 3" /> // Number of parts
 < sval type =" int " val =" -1 " /> // First operand
 < sval type =" int " val =" 13" /> // *
 < sval type =" int " val =" -2 " /> // Second operand
</ sval >

However, in the commented command, it would be:

<sval type =" array " size =" 11" >
 < sval type =" int " val =" xxx " /> // Line to insert to
 < sval type =" int " val =" 3" /> // This is a command
 < sval type =" int " val =" 104" /> // Expression
 < sval type =" string " val =" x" /> // Return
 < sval type =" int " val =" 3" /> // Number of parts

47

 < sval type =" int " val =" 131074 " /> // Variable
 < sval type =" string " val =" 1" /> // Var $y
 < sval type =" int " val =" 15" /> // Operator
 < sval type =" int " val =" 13" /> // *
 < sval type =" int " val =" 4" /> // Literal (4 = int)
 < sval type =" int " val =" 2" /> // 2
</ sval >

Notice how it's shorter? And how the expression is in infix order, not postfix?
And how there's only one section now, not two? Weird, isn't it?

5.6 Differences in X2
There are actually very few differences between X2 and X3 scripts, aside from
the extra commands in the newer game. The only real difference is that some
constants in X2 have 65536 added to them – in particular, those constants
referring to in-game objects:

1 THIS
3 PLAYERSHIP
4 HOMEBASE
5 ENVIRONMENT
6 SECTOR
11 DOCKEDAT

Apart from this, and the different script engine version, scripts should be
compatible.

5.7 Differences in X3TC
X3TC introduces many new changes to the script engine, ranging from new
data types (e.g. wings, passengers), many new commands (including the
ability to call scripts by their names), and changes to the data files and
structure (including the .PCK compression). Some of these are more easy to
adapt to than others.

Another major difference (in terms of script compatibility) is that X3TC will only
load X3TC scripts – to open old X3/X2 scripts in game, you will first need to
load and save them in Exscriptor's X3TC mode (or alternatively, manually
change the two engine IDs to 40 or 41 inside the script file).

It is important to note that some pre-existing X3 (or even X2) commands have
been changed; if your script uses these, then you may need to check them in
more detail (but then again, it would be a good idea anyway, as X3TC may
offer better ways of doing things).

Once again, I would like to point out that V1.2.x of the Exscriptor has
essentially been "stretched" to cover X3TC, and there may be gaps in its
support for the new features. Caution is strongly advised.

48

5.7.1 Data file changes
Some of the most important changes in X3TC are in its data files. Firstly, the
.PCK format has changed; in X2/X3, it was a zipped file that was then
"encrypted" by XORing the file with a certain value. In X3TC, Egosoft
inexplicably changed this so that .PCK files are now essentially just zip files
(and can therefore be unzipped with normal tools like WinZip or 7zip etc). This
necessitated changes in the file structure libraries underlying the Exscriptor.

Secondly, the language files have changed from their familiar XXYYYY
format, where XX is the language and YYYY the ID, to YYYY-L0XX. Again,
this meant updating the functions that read in the language files. More
importantly, the contents of the main language files have been extended with
many new entries. Later X3 patches introduced new data by giving it a 30
prefix, so that e.g. script commands at 2003 were extended with new
commands at 302003. X3TC introduces a third section with the prefix 35,
meaning script commands are spread across page IDs 2003, 302003, and
352003.

New pages were introduced too. Ship commands can be found in pages
2008, 2010, and 2011 (and often 30xxxx versions too). As well as new 35xxxx
versions, an entirely new section – Wing Commands – has been added at
pages 2028, 2030, and 2031 (i.e. the ship command pages + 20). To support
these, new data types (e.g. DATATYP_WINGCMD) and script parameter
types (e.g. Var/Wing Command) have been added.

Similarly, new data/parameter types have been added to support passengers
(e.g. DATATYP_PASSENGER, Var/Passenger) and the new user menu
system (such as the new Script Reference Type parameter type). All of
these involve additional type checking in the compiler.

5.7.2 Command/codearray changes
Aside from the changes already mentioned, there are many new commands2

and in some cases, these new commands override earlier ones (many of the
"find" commands, for example, now have an "exclude array" parameter). For
the most part, these required no extra handling in the compiler, but there are
some baffling changes. The infamous and irritating 1185 has had its name
changed so it is less ambiguous (it is now starts a "delayed" command,
whatever that means), but its number of parameters remains totally
inconsistent; in some official X3TC scripts it still has 5 parameters, in others
only 4.

Similarly, the DATATYPes are handled inconsistently in command 125, the is
datatyp [value] command. In some cases they have higher bits set
(and so have values of 65536 + ID) and in other cases they do not. I have yet
to figure out whatever logic (if any) lies behind this.

2 One particular curiosity: command 1442, "add marine to attack group on ship ",
does not appear in the in-game script editor, but it does work. It's very handy for "beaming"
marines directly aboard enemy ships…

49

Command 1384 is an extreme case. It is a new command, "set wing
command", and according to the data files, it has 4 parameters; in the code
array, several official scripts give it six parameters. 1496 is another example,
except this is totally incomprehensible as it has just one extra codearray entry;
this is not enough for an extra parameter and it seems to have a value (10)
that does not seem to correspond to anything.

Finally, there are a number of built-in/official scripts that call non-existent
scripts or scripts with the wrong number of parameters (the "find station"
commands with exclude arrays are particularly prone to this).

Since the logic behind many of these "features" is unclear (and these are just
the ones I've found), Exscriptor may get it wrong while compiling them. In
such cases, loading the script into the game and saving it there may either fix
the problem or at least highlight it.

5.8 Differences in X3AP
Whereas X3TC made a lot of changes over X3R, X3AP made less drastic
changes, mostly restricted to adding lots of new script editor commands and a
few constants etc. X3AP however also has a different directory structure,
since it requires X3TC's data files; this necessitated some fiddling with the
data file loading. X3AP's new entries are typically prefixed by 38 in the
language files, thus:

• xxxx (e.g. 2003) are the X2 entries
• 30xxxx (e.g 302003) are the X3 entries
• 35xxxx (e.g. 352003) are the X3TC entries
• 38xxxx (e.g. 382003) are the new X3AP entries

The game also adds new "Fleet Commands" in the 1300 range, together with
three invisible commands (1619-1621) used in the Graph.* scripts which are
not in the language files:

 <RetVar> = get player ship usage time: <Var/Ship Type>
 <RetVar> = get player object killed count: <Var/Ship Type/Station Type>
 <RetVar/IF> = <RefObj>->get complex hangar

The script engine also seems to have been updated to version 50.

Big thanks to Shimrod for beating me to it and updating the X3AP command
parameters files!

50

6 Glossary
Codearray The important part of a script file. This is where X3 loads its

data from. It has ten parts, the most important of which is
the seventh part which contains all the script commands
themselves

Conditional
command

A command that performs some kind of comparison or
makes some kind of decision, e.g. an "if" command. Many
commands can be made conditional by changing the return
variable to "if", "while", or "skip if" etc.

Expression An expression is a special type of script command that
performs some calculation and then either assigns or
compares the result. For example, "$x = $y + 10 " is an
expression, as is "if $x > 10 "

Hidden
commands

These are commands not present in the main codearray of
a script and include comments, empty lines, and flow
commands like "end", "break", and "else".

ISE Ingame Script Editor, i.e. the script editor in X3.
Language Files These are the .xml or .pck files in the "\t" directory of X3.

They all have numeric 6 digit names, the first two digits of
which represent the language (e.g. 44 = English). They
contain virtually all the text used in the game.

Maintype/
Subtype

Every ship, ware and station has a maintype and a subtype.
The maintype tells you what kind of object it is (e.g.
maintype 7 is for ships) and the subtype identifies that ware
within the maintype (it is also the index into the Type file).

Object List The box in the right side of the interface where various
objects and commands are listed.

RefObj The object you're performing a script command on, e.g. in
"[THIS]->get sector ", [THIS] is the RefObj. You can
spot a RefObj as it is always on the left of the -> arrow.

RetVar A return variable (usually), i.e. the variable you store the
result of a script command in. Can also be a conditional
command like "if", "while" etc.

Script An X3 script file, usually in .xml format.
Script Editor Both any editor capable of editing X3 scripts (including the

ingame editor) and the black box on the left of the interface
where the code of the script is edited.

Script Metadata Data about the script – its name, its version, the engine
version it was designed for, what command it represents,
its description.

Status Box The box in the lower left corner of the Exscriptor interface
where messages and results are shown.

Syntax Syntax is the structure or grammar of a language (scripts,
in this case).

Type files These are the .txt files that (when unpacked) can be found
in the "\type" directory of X3. They usually have names
beginning with T, e.g. "TShips.txt", and contain data about
objects, ships, wares, and stations etc.

